Improving the Accuracy of K-Nearest Neighbour Method in Long Lead Hydrological Forecasting
نویسندگان
چکیده
منابع مشابه
Forecasting using a Fuzzy Nearest Neighbour Method
1 Singh, S. "Forecasting using a Fuzzy Nearest Neighbour Method", Proc. 6th International Conference on Fuzzy Theory and Technology , Fourth Joint Conference on Information Sciences (JCIS'98), North Carolina, vol. 1, pp.80-83, 1998 (23-28 October ,1998) ABSTRACT This paper explores a nearest neighbour pattern recognition method for time-series forecasting. A nearest neighbour method (FNNM) base...
متن کاملk-Nearest Neighbour Classifiers
Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...
متن کاملFuzzy Nearest Neighbour Method for Time-series Forecasting
This paper explores a nearest neighbour pattern recognition method for time-series forecasting. A nearest neighbour method (FNNM) based on fuzzy membership values is developed. The main aim of the forecasting algorithm is to make single point forecasts into the future on the basis of past nearest neighbours. The nearest neighbours are selected using a membership threshold value. The results inc...
متن کاملDesigning Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we...
متن کاملA Study of K-Nearest Neighbour as an Imputation Method
Data quality is a major concern in Machine Learning and other correlated areas such as Knowledge Discovery from Databases (KDD). As most Machine Learning algorithms induce knowledge strictly from data, the quality of the knowledge extracted is largely determined by the quality of the underlying data. One relevant problem in data quality is the presence of missing data. Despite the frequent occu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientia Iranica
سال: 2016
ISSN: 2345-3605
DOI: 10.24200/sci.2016.2164